Intratracheally injected human-induced pluripotent stem cell-derived pneumocytes and endothelial cells engraft in the distal lung and ameliorate emphysema in a rat model.

The Journal of thoracic and cardiovascular surgery(2023)

Cited 1|Views14
No score
Abstract
OBJECTIVES:Pulmonary emphysema is characterized by the destruction of alveolar units and reduced gas exchange capacity. In the present study, we aimed to deliver induced pluripotent stem cell-derived endothelial cells and pneumocytes to repair and regenerate distal lung tissue in an elastase-induced emphysema model. METHODS:We induced emphysema in athymic rats via intratracheal injection of elastase as previously reported. At 21 and 35 days after elastase treatment, we suspended 80 million induced pluripotent stem cell-derived endothelial cells and 20 million induced pluripotent stem cell-derived pneumocytes in hydrogel and injected the mixture intratracheally. On day 49 after elastase treatment, we performed imaging, functional analysis, and collected lungs for histology. RESULTS:Using immunofluorescence detection of human-specific human leukocyte antigen 1, human-specific CD31, and anti--green fluorescent protein for the reporter labeled pneumocytes, we found that transplanted cells engrafted in 14.69% ± 0.95% of the host alveoli and fully integrated to form vascularized alveoli together with host cells. Transmission electron microscopy confirmed the incorporation of the transplanted human cells and the formation of a blood-air barrier. Human endothelial cells formed perfused vasculature. Computed tomography scans revealed improved vascular density and decelerated emphysema progression in cell-treated lungs. Proliferation of both human and rat cell was higher in cell-treated versus nontreated controls. Cell treatment reduced alveolar enlargement, improved dynamic compliance and residual volume, and improved diffusion capacity. CONCLUSIONS:Our findings suggest that human induced pluripotent stem cell-derived distal lung cells can engraft in emphysematous lungs and participate in the formation of functional distal lung units to ameliorate the progression of emphysema.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined