Chrome Extension
WeChat Mini Program
Use on ChatGLM

Pulse Tube Cooler with > 100 m Flexible Lines for Operation of Cryogenic Detector Arrays at Large Radiotelescopes

Journal of Low Temperature Physics(2023)

Cited 0|Views66
No score
Abstract
Large radio and mm–wave telescopes use very sensitive detectors requiring cryogenic cooling to reduce detector noise. Pulse Tubes (PT) cryocoolers are widely used to reach temperatures of a few K, defining the base temperature of further sub–K stages. This technology represents an effective solution for continuous operation, featuring high stability and reduced vibration levels on the detectors. However, the compressor used to operate the PT is a significant source of microphonics and electrical noise, making its use at the focus of large steerable telescopes not advisable. This calls for long flexible helium lines between the compressor, operated at the base of the radio telescope, and the cold–head, mounted in the receivers cabin with the receiver detectors. The distance between the receiver cabin and the base can be >100 m long for large radio telescopes. In the framework of our development of the MIllimetric Sardinia radio Telescope Receiver based on Array of Lumped elements kids (MISTRAL), a W–band camera working at the Gregorian focus of the 64 m aperture Sardinia Radio Telescope (SRT) with an array of Lumped Elements Kinetic Inductance Detectors (LEKID), we have developed a cryogenic system based on a PT refrigerator as the first cooling stage. Here we describe the MISTRAL cryogenic system and focus on the validation of the use of a commercial PT Cryocooler with 100 m helium lines running from the cold head to the compressor unit. The configuration allows us to operate the 0.9 W PT reaching below 4.2 K with 0.5 W dissipation.
More
Translated text
Key words
Pulse tube cryocooler,W–band,Cryogenics,Ground–based telescope
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined