Di-n-butyl phthalate stress hampers compost multifunctionality by reducing microbial biomass, diversity and network complexity.

Bioresource technology(2023)

引用 0|浏览13
暂无评分
摘要
Phthalates are common pollutants in agriculture. Here, the influence of di-n-butyl phthalate (DBP) on multifunctionality of composting was assessed. Results indicated that DBP stress (100 mg/kg) hampered multifunctionality from the thermophilic phase onwards and resulted in a 6.5 % reduction of all assessed functions. DBP stress also significantly reduced microbial biomass (P < 0.05), altered microbial composition (P < 0.05), and decreased network complexity (P < 0.01). Multifunctionality was found to be strongly correlated (P < 0.001) with microbial biomass, diversity, and network complexity. In addition, keystone taxa responsive to DBP were identified as Streptomyces, Thermoactinomyces, Mycothermus, and Lutispora. These taxa were significantly (P < 0.001) affected by DBP stress, and a correlation between them and multifunctionality was shown. This study contributes to a better understanding of the negative implications of phthalates during composting processes, which is of great significance to the development of new treatment strategies for agricultural waste.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要