谷歌浏览器插件
订阅小程序
在清言上使用

Permeable Cornified Envelope Layer Regulates the Solute Transport in Human Stratum Corneum.

Journal of pharmaceutical sciences(2023)

引用 0|浏览4
暂无评分
摘要
To unravel the diffusion mechanisms of percutaneous drug delivery, suitable numerical analysis of stratum corneum structure is essential. In this research paper, we accounted for the permeable envelope layer in the brick-and-mortar finite element models of human stratum corneum. Both penetration and desorption experiments for tritiated water were simulated by transient finite element analysis. Rivet-shaped corneodesmosomes were included in the brick and mortar model. Results showed that cornified lipid permeability (Penv) is a determinant in desorption of the solute, while lipid transverse diffusion coefficient (Dlip-trans) is prominent during penetration. These two major unknowns (Penv and Dlip-trans) were obtained by extensive fitting of the finite element model to the experimental water data. Penv and Dlip-trans were determined to be 1×10-2 cm/s and 5.7×10-10 cm2/s, respectively.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要