Whole genome sequencing distinguishes the two most common giant kelp ecomorphs.

Evolution; international journal of organic evolution(2023)

引用 2|浏览6
暂无评分
摘要
Giant kelp, Macrocystis pyrifera, exists as distinct morphological variants-or "ecomorphs"-in different populations, yet the mechanism for this variation is uncertain, and environmental drivers for either adaptive or plastic phenotypes have not been identified. The ecomorphs Macrocystis "pyrifera" and M. "integrifolia" are distributed throughout temperate waters of North and South America with almost no geographic overlap, and exhibit an incongruous, non-mirrored, distribution across the equator. This study evaluates the degree of genetic divergence between M. "pyrifera" and M. "integrifolia" across 18 populations in Chile and California using whole-genome sequencing and SNP markers. Our results based on a principal component analysis, admixture clustering by genetic similarity, and phylogenetic inference demonstrate that M. "pyrifera" and M. "integrifolia" are genetically distinguishable. Analyses reveal separation by Northern and Southern Hemispheres and between morphs within hemispheres, suggesting that the convergent "integrifolia" morphology arose separately in each hemisphere. This is the first study to use whole-genome sequencing to understand genetic divergence in giant kelp ecomorphs, identifying 83 potential genes under selection and providing novel insights about Macrocystis evolution that were not evident with previous genetic techniques. Future studies are needed to uncover the environmental forces driving local adaptation and presumed convergent evolution of these morphs.
更多
查看译文
关键词
Macrocystis ,convergent,ecomorph,kelp,speciation,whole-genome sequencing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要