Chrome Extension
WeChat Mini Program
Use on ChatGLM

Begomoviral beta C1 orchestrates organellar genomic instability to augment viral infection

The Plant journal : for cell and molecular biology(2023)

Cited 4|Views7
No score
Abstract
Chloroplast is the site for transforming light energy to chemical energy. It also acts as a production unit for a variety of defense-related molecules. These defense moieties are necessary to mount a successful counter defense against pathogens, including viruses. Previous studies indicated disruption of chloroplast homeostasis as a basic strategy of Begomovirus for its successful infection leading to the production of vein-clearing, mosaic, and chlorotic symptoms in infected plants. Although begomoviral pathogenicity determinant protein Beta C1 (beta C1) was implicated for pathogenicity, the underlying mechanism was unclear. Here we show that, begomoviral beta C1 directly interferes with the host plastid homeostasis. beta C1 induced DPD1, an organelle-specific nuclease, implicated in nutrient salvage and senescence, as well as modulated the function of a major plastid genome maintainer protein RecA1, to subvert plastid genome. We show that beta C1 was able to physically interact with bacterial RecA and its plant homolog RecA1, resulting in its altered activity. We observed that knocking-down DPD1 during virus infection significantly reduced virus-induced necrosis. These results indicate the presence of a strategy in which a viral protein alters host defense by targeting modulators of chloroplast DNA. We predict that the mechanism identified here might have similarities in other plant-pathogen interactions.
More
Translated text
Key words
Begomovirus,DNA-damage and repair,DPD1,RecA,chloroplast,βC1
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined