Exploring the Knowledge Attained by Machine Learning on Ion Transport across Polyamide Membranes Using Explainable Artificial Intelligence

Environmental science & technology(2023)

引用 1|浏览20
暂无评分
摘要
Recent studies have increasingly applied machine learning (ML) to aid in performance and material design associated with membrane separation. However, whether the knowledge attained by ML with a limited number of available data is enough to capture and validate the fundamental principles of membrane science remains elusive. Herein, we applied explainable artificial intelligence (XAI) to thoroughly investigate the knowledge learned by ML on the mechanisms of ion transport across polyamide reverse osmosis (RO) and nanofiltration (NF) membranes by leveraging 1,585 data from 26 membrane types. The Shapley additive explanation method based on cooperative game theory was used to unveil the influences of various ion and membrane properties on the model predictions. XAI shows that the ML can capture the important roles of size exclusion and electrostatic interaction in regulating membrane separation properly. XAI also identifies that the mechanisms governing ion transport possess different relative importance to cation and anion rejections during RO and NF filtration. Overall, we provide a framework to evaluate the knowledge underlying the ML model prediction and demonstrate that ML is able to learn fundamental mechanisms of ion transport across polyamide membranes, highlighting the importance of elucidating model interpretability for more reliable and explainable ML applications to membrane selection and design.
更多
查看译文
关键词
machine learning,explainable artificial intelligence,nanofiltration,reverse osmosis,ion transport,membrane separation mechanisms
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要