Amarogentin inhibits vascular smooth muscle cell proliferation and migration and attenuates neointimal hyperplasia via AMPK activation.

Biochimica et biophysica acta. Molecular basis of disease(2023)

Cited 0|Views1
No score
Abstract
OBJECTIVES:Recent studies validated the expression of extraoral bitter taste receptors and established the importance of regulatory functions that are associated with various cellular biological processes of these receptors. However, the importance of bitter taste receptors' activity in neointimal hyperplasia has not yet been recognized. The bitter taste receptors activator amarogentin (AMA) is known to regulate a variety of cellular signals, including AMP-activated protein kinase (AMPK), STAT3, Akt, ERK, and p53, which are associated with neointimal hyperplasia. MATERIALS AND METHODS:The present study assessed the effects of AMA on neointimal hyperplasia and explored the potential underlying mechanisms. RESULTS:No cytotoxic concentration of AMA significantly inhibited the proliferation and migration of VSMCs induced by serum (15 % FBS) and PDGF-BB. In addition, AMA significantly inhibited neointimal hyperplasia of the cultured great saphenous vein in vitro and ligated mouse left carotid arteries in vivo, while the inhibitory effect of AMA on the proliferation and migration of VSMCs was mediated via the activation of AMPK-dependent signaling, which could be blocked via AMPK inhibition. CONCLUSION:The present study revealed that AMA inhibited the proliferation and migration of VSMCs and attenuated neointimal hyperplasia, both in ligated mice carotid artery and cultured saphenous vein, which was mediated via a mechanism that involved AMPK activation. Importantly, the study highlighted the potential of AMA to be explored as a new drug candidate for neointimal hyperplasia.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined