Chrome Extension
WeChat Mini Program
Use on ChatGLM

Differential Expression of Mirnas Involved in Response to Candidatus Liberibacter Asiaticus Infection in Mexican Lime at Early and Late Stages of Huanglongbing Disease

Plants(2023)

Cited 0|Views12
No score
Abstract
Huanglongbing (HLB) is one of the most destructive diseases threatening citriculture worldwide. This disease has been associated with α-proteobacteria species, namely Candidatus Liberibacter. Due to the unculturable nature of the causal agent, it has been difficult to mitigate the disease, and nowadays a cure is not available. MicroRNAs (miRNAs) are key regulators of gene expression, playing an essential role in abiotic and biotic stress in plants including antibacterial responses. However, knowledge derived from non-model systems including Candidatus Liberibacter asiaticus (CLas)-citrus pathosystem remains largely unknown. In this study, small RNA profiles from Mexican lime (Citrus aurantifolia) plants infected with CLas at asymptomatic and symptomatic stages were generated by sRNA-Seq, and miRNAs were obtained with ShortStack software. A total of 46 miRNAs, including 29 known miRNAs and 17 novel miRNAs, were identified in Mexican lime. Among them, six miRNAs were deregulated in the asymptomatic stage, highlighting the up regulation of two new miRNAs. Meanwhile, eight miRNAs were differentially expressed in the symptomatic stage of the disease. The target genes of miRNAs were related to protein modification, transcription factors, and enzyme-coding genes. Our results provide new insights into miRNA-mediated regulation in C. aurantifolia in response to CLas infection. This information will be useful to understand molecular mechanisms behind the defense and pathogenesis of HLB.
More
Translated text
Key words
Candidatus Liberibacter asiaticus (CLas),Huanglongbing (HLB),Mexican lime,ShortStack,microRNA,target genes
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined