Discriminating Healthy Optic Discs and Visible Optic Disc Drusen on Fundus Autofluorescence and Color Fundus Photography Using Deep Learning-A Pilot Study

JOURNAL OF CLINICAL MEDICINE(2023)

引用 1|浏览8
暂无评分
摘要
The aim of this study was to use deep learning based on a deep convolutional neural network (DCNN) for automated image classification of healthy optic discs (OD) and visible optic disc drusen (ODD) on fundus autofluorescence (FAF) and color fundus photography (CFP). In this study, a total of 400 FAF and CFP images of patients with ODD and healthy controls were used. A pre-trained multi-layer Deep Convolutional Neural Network (DCNN) was trained and validated independently on FAF and CFP images. Training and validation accuracy and cross-entropy were recorded. Both generated DCNN classifiers were tested with 40 FAF and CFP images (20 ODD and 20 controls). After the repetition of 1000 training cycles, the training accuracy was 100%, the validation accuracy was 92% (CFP) and 96% (FAF), respectively. The cross-entropy was 0.04 (CFP) and 0.15 (FAF). The sensitivity, specificity, and accuracy of the DCNN for classification of FAF images was 100%. For the DCNN used to identify ODD on color fundus photographs, sensitivity was 85%, specificity 100%, and accuracy 92.5%. Differentiation between healthy controls and ODD on CFP and FAF images was possible with high specificity and sensitivity using a deep learning approach.
更多
查看译文
关键词
deep learning,artificial intelligence,optic disc drusen,visible optic disc drusen,deep convolutional neural network,DCNN,inceptionv3
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要