High-Volume-Rate 3-D Ultrasound Imaging Using Fast-Tilting and Redirecting Reflectors

biorxiv(2023)

引用 2|浏览9
暂无评分
摘要
ultrasound imaging has many advantages over 2-D imaging such as more comprehensive tissue evaluation and less operator dependence. However, developing a low-cost and accessible 3-D ultrasound solution with high volume rate and imaging quality remains a challenging task. Recently, we proposed a 3-D ultrasound imaging technique: fast acoustic steering via tilting electromechanical reflectors (FASTER), which uses a fast-tilting acoustic reflector to steer ultrafast plane waves elevationally to achieve high volume-rate 3-D imaging with conventional 1-D transducers. However, the initial FASTER implementation requires a water tank for acoustic wave conduction and cannot be conveniently used for regular handheld scanning. To address these limitations, here, we developed a novel ultrasound probe clip-on device that encloses a fast tilting reflector, a redirecting reflector, and an acoustic wave conduction medium. The new FASTER 3-D imaging device can be easily attached to or removed from clinical ultrasound transducers, allowing rapid transformation from 2-D to 3-D imaging. In vitro B-mode studies demonstrated that the proposed method provided comparable imaging quality to conventional, mechanical-translation based 3-D imaging while offering a much faster volume rate (e.g., 300 versus similar to 10 Hz). We also demonstrated 3-D power Doppler (PD) and 3-D super-resolution ultrasound localization microscopy (ULM) with the FASTER device. An in vivo imaging study showed that the FASTER device could clearly visualize the 3-D anatomy of the basilic vein. These results suggest that the newly developed redirecting reflector and the clip-on device could overcome key hurdles for future clinical translation of the FASTER 3-D imaging technology.
更多
查看译文
关键词
3-D ultrafast imaging,3-D ultrasound imaging,3-D ultrasound localization microscopy (ULM),acoustic reflector,microfabrication
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要