A novel thermostable and salt-tolerant carboxylesterase involved in the initial aerobic degradation pathway for pyrethroids in Glycomyces salinus.

Journal of hazardous materials(2023)

Cited 5|Views11
No score
Abstract
The long-term and excessive use of pyrethroid pesticides poses substantial health risks and ecosystem concerns. Several bacteria and fungi have been reported that could degrade pyrethroids. The ester-bond hydrolysis using hydrolases is the initial regulatory metabolic reaction of pyrethroids. However, the thoroughly biochemical characterization of hydrolases involved in this process is limited. Here, a novel carboxylesterase, designated as EstGS1 that could hydrolyze pyrethroid pesticides was characterized. EstGS1 showed low sequence identity (<27.03%) compared to other reported pyrethroid hydrolases and belonged to the hydroxynitrile lyase family that preferred short short-chain acyl esters (C2 to C8). EstGS1 displayed the maximal activity of 213.38 U/mg at 60 °C and pH 8.5 using pNPC2 as substrate, with Km and Vmax were 2.21 ± 0.72 mM and 212.90 ± 41.78 µM/min, respectively. EstGS1 is a halotolerant esterase and remains stable in 5.1 M NaCl. Based on molecular docking and mutational analysis, the catalytic triad of S74-D181-H212 and three other substrate-binding residues I108, S159, and G75 are critical for the enzymatic activity of EstGS1. Additionally, 61 and 40 mg/L of deltamethrin and λ-cyhalothrin were hydrolyzed by 20 U of EstGS1 in 4 h. This work presents the first report on a pyrethroid pesticide hydrolase characterized from a halophilic actinobacteria.
More
Translated text
Key words
Pyrethroid,Carboxylesterase,Biodegradation,EstGS1,Glycomyces salinus
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined