Chrome Extension
WeChat Mini Program
Use on ChatGLM

Perivascular clearance of blood proteins after blood-brain barrier disruption in a rat model of microinfarcts

Microvascular research(2023)

Cited 2|Views15
No score
Abstract
Microinfarcts result in a transient loss of the blood-brain barrier (BBB) in the ischemic territory. This leads to the extravasation of blood proteins into the brain parenchyma. It is not clear how these proteins are removed. Here we studied the role of perivascular spaces in brain clearance from extravasated blood proteins. Male and female Wistar rats were infused with microspheres of either 15, 25, or 50 mu m in diameter (n = 6 rats per group) via the left carotid artery. We infused either 25,000 microspheres of 15 mu m, 5500 of 25 mu m, or 1000 of 50 mu m. One day later, rats were infused with lectin and hypoxyprobe to label perfused blood vessels and hypoxic areas, respectively. Rats were then euthanized and perfusion-fixed. Brains were excised, sectioned, and analyzed using immunostaining and confocal imaging. Microspheres induced a size-dependent increase in ischemic volume per territory, but the cumulative ischemic volume was similar in all groups. The total volumes of ischemia, hypoxia and infarction affected 1-2 % of the left hemisphere. Immunoglobulins (IgG) were present in ischemic brain tissue surrounding lodged microspheres in all groups. In addition, staining for IgG was found in perivascular spaces of blood vessels nearby areas of BBB disruption. About 2/3 of these vessels were arteries, while the remaining 1/3 of these vessels were veins. The subarachnoid space (SAS) of the affected hemisphere stained stronger for IgG than the contralateral hemisphere in all groups: +27 %, +44 % and +27 % respectively.Microspheres of various sizes induce a local loss of BBB integrity, evidenced by parenchymal IgG staining. The presence of IgG in perivascular spaces of both arteries and veins distinct from the ischemic territories suggests that both contribute to the removal of blood proteins. The strong staining for IgG in the SAS of the affected hemisphere suggests that this perivascular route egresses via the CSF. Perivascular spaces therefore play a previously unrecognized role in tissue clearance of fluid and extravasated proteins after BBB disruption induced by microinfarcts.
More
Translated text
Key words
Microinfarcts,Blood -brain barrier,Glymphatics,Animal model
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined