谷歌浏览器插件
订阅小程序
在清言上使用

Mapping the Complex Genetic Landscape of Human Neurons.

Chen Sun, Kunal Kathuria, Sarah B Emery, ByungJun Kim, Ian E Burbulis, Joo Heon Shin, Brain Somatic Mosaicism Network, Daniel R Weinberger, John V Moran, Jeffrey M Kidd, Ryan E Mills, Michael J McConnell

bioRxiv the preprint server for biology(2023)

引用 2|浏览30
暂无评分
摘要
When somatic cells acquire complex karyotypes, they are removed by the immune system. Mutant somatic cells that evade immune surveillance can lead to cancer. Neurons with complex karyotypes arise during neurotypical brain development, but neurons are almost never the origin of brain cancers. Instead, somatic mutations in neurons can bring about neurodevelopmental disorders, and contribute to the polygenic landscape of neuropsychiatric and neurodegenerative disease. A subset of human neurons harbors idiosyncratic copy number variants (CNVs, "CNV neurons"), but previous analyses of CNV neurons have been limited by relatively small sample sizes. Here, we developed an allele-based validation approach, SCOVAL, to corroborate or reject read-depth based CNV calls in single human neurons. We applied this approach to 2,125 frontal cortical neurons from a neurotypical human brain. This approach identified 226 CNV neurons, as well as a class of CNV neurons with complex karyotypes containing whole or substantial losses on multiple chromosomes. Moreover, we found that CNV location appears to be nonrandom. Recurrent regions of neuronal genome rearrangement contained fewer, but longer, genes.
更多
查看译文
关键词
complex genetic landscape,neurons,mapping
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要