Biocompatible zinc battery with programmable electro-cross-linked electrolyte.

National science review(2023)

引用 46|浏览28
暂无评分
摘要
Aqueous zinc batteries (ZBs) attract increasing attention for potential applications in modern wearable and implantable devices due to their safety and stability. However, challenges associated with biosafety designs and the intrinsic electrochemistry of ZBs emerge when moving to practice, especially for biomedical devices. Here, we propose a green and programmable electro-cross-linking strategy to prepare a multi-layer hierarchical Zn-alginate polymer electrolyte (Zn-Alg) via the superionic binds between the carboxylate groups and Zn. Consequently, the Zn-Alg electrolyte provides high reversibility of 99.65% Coulombic efficiency (CE), >500 h of long-time stability and high biocompatibility (no damage to gastric and duodenal mucosa) in the body. A wire-shaped Zn/Zn-Alg/-MnO full battery affords 95% capacity retention after 100 cycles at 1 A g and good flexibility. The new strategy has three prominent advantages over the conventional methods: (i) the cross-linking process for the synthesis of electrolytes avoids the introduction of any chemical reagents or initiators; (ii) a highly reversible Zn battery is easily provided from a micrometer to large scales through automatic programmable functions; and (iii) high biocompatibility is capable of implanted and bio-integrated devices to ensure body safety.
更多
查看译文
关键词
biocompatible zinc battery,green and programmable electro-cross-linking,polymer electrolyte
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要