Determination of protein-bound α-amanitin in mouse plasma: A potential new indicator of poisoning with the mushroom toxin α-amanitin

Toxicon(2023)

引用 0|浏览7
暂无评分
摘要
Approximately 70%∼90% of mushroom poisoning deaths are caused by the class of mushroom toxins known as amatoxins. However, the rapid elimination of amatoxins from plasma within 48 h after mushroom ingestion limits the practical value of plasma amatoxin analysis as a diagnostic indicator of Amanita mushroom poisoning. To increase the positive detection rate and extend the detection window of amatoxin poisoning, we developed a new method to detect protein-bound α-amanitin based on the hypothesis that RNAP II-bound α-amanitin released from the tissue into the plasma could be degraded by trypsin hydrolysis and then detected by conventional liquid chromatography–mass spectrometry (LC‒MS). Toxicokinetic studies on mice intraperitoneally injected with 0.33 mg/kg α-amanitin were conducted to obtain and compare the concentration trends, detection rates, and detection windows of both free α-amanitin and protein-bound α-amanitin. By comparing detection results with and without trypsin hydrolysis in the liver and plasma of α-amanitin-poisoned mice, we verified the credibility of this method and the existence of protein-bound α-amanitin in plasma. Under the optimized trypsin hydrolysis conditions, we obtained a time-dependent trend of protein-bound α-amanitin in mouse plasma at 1–12 days postexposure. In contrast to the short detection window (0–4 h) of free α-amanitin in mouse plasma, the detection window of protein-bound α-amanitin was extended to 10 days postexposure, with a total detection rate of 53.33%, ranging from the limit of detection to 23.94 μg/L. In conclusion, protein-bound α-amanitin had a higher positive detection rate and a longer detection window than free α-amanitin in mice.
更多
查看译文
关键词
α-amanitin,RNA polymerase II,Protein-bound α-amanitin,Plasma,Diagnosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要