TRUSformer: improving prostate cancer detection from micro-ultrasound using attention and self-supervision

arxiv(2023)

引用 0|浏览23
暂无评分
摘要
Purpose A large body of previous machine learning methods for ultrasound-based prostate cancer detection classify small regions of interest (ROIs) of ultrasound signals that lie within a larger needle trace corresponding to a prostate tissue biopsy (called biopsy core). These ROI-scale models suffer from weak labeling as histopathology results available for biopsy cores only approximate the distribution of cancer in the ROIs. ROI-scale models do not take advantage of contextual information that are normally considered by pathologists, i.e., they do not consider information about surrounding tissue and larger-scale trends when identifying cancer. We aim to improve cancer detection by taking a multi-scale, i.e., ROI-scale and biopsy core-scale, approach. Methods Our multi-scale approach combines (i) an “ROI-scale” model trained using self-supervised learning to extract features from small ROIs and (ii) a “core-scale” transformer model that processes a collection of extracted features from multiple ROIs in the needle trace region to predict the tissue type of the corresponding core. Attention maps, as a by-product, allow us to localize cancer at the ROI scale. Results We analyze this method using a dataset of micro-ultrasound acquired from 578 patients who underwent prostate biopsy, and compare our model to baseline models and other large-scale studies in the literature. Our model shows consistent and substantial performance improvements compared to ROI-scale-only models. It achieves 80.3% AUROC, a statistically significant improvement over ROI-scale classification. We also compare our method to large studies on prostate cancer detection, using other imaging modalities. Conclusions Taking a multi-scale approach that leverages contextual information improves prostate cancer detection compared to ROI-scale-only models. The proposed model achieves a statistically significant improvement in performance and outperforms other large-scale studies in the literature. Our code is publicly available at www.github.com/med-i-lab/TRUSFormer .
更多
查看译文
关键词
Prostate cancer,Micro-ultrasound,Self-attention,Self-supervised learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要