Assessment of wastewater-borne pharmaceuticals in tissues and body fluids from riverine fish.

Environmental pollution (Barking, Essex : 1987)(2023)

引用 3|浏览17
暂无评分
摘要
Riverine fish in densely populated areas is constantly exposed to wastewater-borne contaminants from effluent discharges. These can enter the organism through the skin, gills or by ingestion. Whereas most studies assessing the contaminant burden in exposed fish have focused either on muscle or a limited set of tissues. Here we set out to generate a more comprehensive overview of the distribution of pollutants across tissues by analyzing a panel of matrices including liver, kidney, skin, brain, muscle, heart, plasma and bile. To achieve a broad analyte coverage with a minimal bias towards a specific contaminant class, sample extracts from four fish species were analyzed by High-Performance Liquid Chromatography (HPLC) - high-resolution mass spectrometry (HRMS) for the presence of 600 wastewater-borne pharmaceutically active compounds (PhACs) with known environmental relevance in river water through a suspect-screening analysis. A total of 30 compounds were detected by suspect screening in at least one of the analyzed tissues with a clear prevalence of antidepressants. Of these, 15 were detected at confidence level 2.a (Schymanski scale), and 15 were detected at confidence level 1 following confirmation with authentic standards, which furthermore enabled their quantification. The detected PhACs confirmed with level 1 of confidence included acridone, acetaminophen, caffeine, clarithromycin, codeine, diazepam, diltiazem, fluoxetine, ketoprofen, loratadine, metoprolol, sertraline, sotalol, trimethoprim, and venlafaxine. Among these substances, sertraline stood out as it displayed the highest detection frequency. The values of tissue partition coefficients for sertraline in the liver, kidney, brain and muscle were correlated with its physicochemical properties. Based on inter-matrix comparison of detection frequencies, liver, kidney, skin and heart should be included in the biomonitoring studies of PhACs in riverine fish.
更多
查看译文
关键词
Aquatic biota,Pollutants distribution in fish,Suspect screening
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要