Deglycosylation Inactivation Initiated by a Novel Periplasmic Dehydrogenase Complex Provides a Novel Strategy for Eliminating the Recalcitrant Antibiotic Kanamycin.

Environmental science & technology(2023)

Cited 2|Views7
No score
Abstract
Biodegradation using enzyme-based systems is a promising approach to minimize antibiotic loads in the environment. Aminoglycosides are refractory antibiotics that are generally considered non-biodegradable. Here, we provide evidence that kanamycin, a common aminoglycoside antibiotic, can be degraded by an environmental bacterium through deglycosylation of its 4'-amino sugar. The unprecedented deglycosylation inactivation of kanamycin is initiated by a novel periplasmic dehydrogenase complex, which we designated AquKGD, composed of a flavin adenine dinucleotide-dependent dehydrogenase (AquKGDα) and a small subunit (AquKGDγ) containing a twin-arginine signal sequence. We demonstrate that the formation of the AquKGDα-AquKGDγ complex is required for both the degradation activity of AquKGD and its translocation into the periplasm. Native AquKGD was successfully expressed in the periplasmic space of , and physicochemical analysis indicated that AquKGD is a stable enzyme. AquKGD showed excellent degradation performance, and complete elimination of kanamycin from actual kanamycin manufacturing waste was achieved with immobilized AquKGD. Ecotoxicity and cytotoxicity tests suggest that AquKGD-mediated degradation produces less harmful degradation products. Thus, we propose a novel enzymatic antibiotic inactivation strategy for effective and safe treatment of recalcitrant kanamycin residues.
More
Translated text
Key words
FAD-dependent dehydrogenase,aminoglycoside antibiotics,antibiotic pollution,bioremediation,enzyme degradation,kanamycin
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined