Two-stage stochastic formulation for relief operations with multiple agencies in simultaneous disasters

OR SPECTRUM(2023)

引用 3|浏览10
暂无评分
摘要
The increasing damage caused by disasters is a major challenge for disaster management authorities, especially in instances where simultaneous disasters affect different geographical areas. The uncertainty and chaotic conditions caused by these situations combined with the inherent complexity of collaboration between multiple stakeholders complicates delivering support for disaster victims. Decisions related to facility location, procurement, stock prepositioning and relief distribution are essential to ensure the provision of relief for these victims. There is a need to provide analytical models that can support integrated decision-making in settings with uncertainty caused by simultaneous disasters. However, there are no formulations tackling these decisions combining multiple suppliers, multiple agencies, and simultaneous disasters. This article introduces a novel bi-objective two-stage stochastic formulation for disaster preparedness and immediate response considering the interaction of multiple stakeholders in uncertain environments caused by the occurrence of simultaneous disasters. At the first stage, decisions related to the selection of suppliers, critical facilities, agencies involved, and pre-disaster procurement are defined. Resource allocation, relief distribution and procurement of extra resources after the events are decided at the second stage. The model was tested on data from the situation caused by simultaneous hurricanes and storms in Mexico during September of 2013. The case is contrasted with instances planning for disasters independently. The results show how planning for multiple disasters can help understand the real boundaries of the disaster response system, the benefits of integrated decision-making, the impact of deploying only the agencies required, and the criticality of considering human resources in disaster planning.
更多
查看译文
关键词
Humanitarian logistics,Multi-objective programming,Procurement,Simultaneous disasters,Disaster preparedness
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要