Reduced phosphorus availability in paddy soils under atmospheric CO 2 enrichment

NATURE GEOSCIENCE(2023)

Cited 13|Views101
No score
Abstract
Phosphorus is an essential element for plant metabolism and growth, but its future supply under elevated levels of atmospheric CO 2 remains uncertain. Here we present measurements of phosphorus concentration from two long-term (15 and 9 years) rice free air carbon dioxide enrichment experiments. Although no changes were observed in the initial year of the experiments, by the end of the experiments soil available phosphorus had declined by more than 20% (26.9% and 21.0% for 15 and 9 years, respectively). We suggest that the reduction can be explained by the production of soil organic phosphorus that is not in a readily plant-available form, as well as by increased removal through crop harvest. Our findings further suggest that increased transfers of plant available phosphorus from biological, biochemical and chemical phosphorus under anthropogenic changes are insufficient to compensate for reductions to plant available phosphorus under long-term exposure to elevated CO 2 . We estimate that reductions to rice yields could be particularly acute in low-income countries under future CO 2 scenarios without the input of additional phosphorus fertilizers to compensate, despite the potentially reduced global risk for phosphorus pollution.
More
Translated text
Key words
Biogeochemistry,Element cycles,Earth Sciences,general,Geology,Geochemistry,Geophysics/Geodesy,Earth System Sciences
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined