Ultrasonic-assisted synthesis of Ni based-layered double hydroxide doped carbon nanotube and its highly efficient in water oxidation reaction

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY(2023)

Cited 3|Views2
No score
Abstract
Among the developed electrocatalysts, NiCr-layered double hydroxides (NiCr-LDH) are one of the most effective electrocatalytic materials for water oxidation. However, applications of such a kind of materials are practically limited due to their poor electric conductivity. In this work, the single-walled carbon nanotube (SWCNT) was doped to NiCr-LDH, and the LDH-based nanocomposites were synthesized using the one-step ultrasonic-assisted method. Physicochemical properties of the NiCr-LDH/SWCNT composites were characterized by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), field emission-scanning electron microscopy (FE-SEM), and linear sweep voltammetry (LSV). The NiCr-LDH/SWCNT composites were used as effective nanomaterials for oxygen evolution reaction (OER) at a near neutral medium. The LSV results confirm that the overpotential of the NiCr-LDH/SWCNT-0.006 sample decreased to about 120 mV at pH = 9.5, as compared with that of the NiCr-LDH or NiCr-LDH-SWCNT-0.006 (prepared by the two-step method) sample. The high oxygen evolution activity of NiCr-LDH/SWCNT-0.006 was associated with the co-presence of the homogeneously dispersed NiCr-LDH, good electrochemical activity, and high electrical conductivity. In addition, the as-prepared optimized NiCr-LDH/SWCNT electrocatalyst was highly stable for the OER reaction. (c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
More
Translated text
Key words
Water oxidation,Electrocatalyst,Doped carbon nanotube,Ni-based-layered double hydroxide,Ultrasonic method
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined