Stabilization of Equiatomic Solutions Due to High-Entropy Effect

MATERIALS TRANSACTIONS(2023)

Cited 0|Views3
No score
Abstract
The stability of solid-solution phases in FCC and BCC lattices was examined in multi-component alloys based on the CALPHAD technique using the compound energy formalism and regular solution model. From the thermodynamic calculations, it was found in ternary systems that the single solid-solution phase became stable around the equiatomic composition where the configurational entropy was the largest value. The transition temperature from the disordered phase to ordered phase(s) or miscibility gap(s) decreased with the increasing number of elements in the system. The order-disorder transition temperature on the FCC lattice was affected by the end member of the ordered phases existing at the equiatomic composition, whereas it was not significant for the order-disorder transition in the BCC lattice. The single solid-solution phase region at equiatomic compositions was affected by variations in the interaction parameters. In multi-component systems, the variations were averaged with increasing the number of elements in the system. This suggests that high-entropy alloys can afford a variety of elements. This study shows that the disordered state can be formed in multicomponent systems around the equiatomic composition and suggests clearly that due to the high-entropy effect, the solution phases are stabilized.
More
Translated text
Key words
regular solution,order-disorder transition,phase stability,miscibility gap
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined