Learning Not to Regret

AAAI 2024(2024)

Cited 0|Views50
No score
Abstract
The literature on game-theoretic equilibrium finding predominantly focuses on single games or their repeated play. Nevertheless, numerous real-world scenarios feature playing a game sampled from a distribution of similar, but not identical games, such as playing poker with different public cards or trading correlated assets on the stock market. As these similar games feature similar equilibra, we investigate a way to accelerate equilibrium finding on such a distribution. We present a novel ``learning not to regret'' framework, enabling us to meta-learn a regret minimizer tailored to a specific distribution. Our key contribution, Neural Predictive Regret Matching, is uniquely meta-learned to converge rapidly for the chosen distribution of games, while having regret minimization guarantees on any game. We validated our algorithms' faster convergence on a distribution of river poker games. Our experiments show that the meta-learned algorithms outpace their non-meta-learned counterparts, achieving more than tenfold improvements.
More
Translated text
Key words
ML: Online Learning & Bandits
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined