HfO2-based ferroelectric thin film and memory device applications in the post-Moore era: A review

Fundamental Research(2023)

引用 6|浏览2
暂无评分
摘要
The rapid development of 5G, big data, and Internet of Things (IoT) technologies is urgently required for novel non-volatile memory devices with low power consumption, fast read/write speed, and high reliability, which are crucial for high-performance computing. Ferroelectric memory has undergone extensive investigation as a viable alternative for commercial applications since the post-Moore era. However, conventional perovskite-structure ferroelectrics (e.g., PbZrxTi1-xO3) encounter severe limitations for high-density integration owing to the size effect of ferroelectricity and incompatibility with complementary metal-oxide-semiconductor technology. Since 2011, the ferroelectric field has been primarily focused on HfO2-based ferroelectric thin films owing to their exceptional scalability. Several reviews discussing the control of ferroelectricity and device applications exist. It is believed that a comprehensive understanding of mechanisms based on industrial requirements and concerns is necessary, such as the wake-up effect and fatigue mechanism. These mechanisms reflect the atomic structures of the materials as well as the device physics. Herein, a review focusing on phase stability and domain structure is presented. In addition, the recent progress in related ferroelectric memory devices and their challenges is briefly discussed.
更多
查看译文
关键词
Hfo2 ferroelectrics,Phase stability,Domain structure,Wake-up,Fatigue,Ferroelectric field-effect transistor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要