Broadly effective ACE2 decoy proteins protect mice from lethal SARS-CoV-2 infection

biorxiv(2023)

引用 1|浏览13
暂无评分
摘要
As SARS-CoV-2 variants have been causing increasingly serious drug resistance problem, development of broadly effective and hard-to-escape anti-SARS-CoV-2 agents is in urgent need. Here we describe further development and characterization of two SARS-CoV-2 receptor decoy proteins, ACE2-Ig-95 and ACE2-Ig-105/106. We found that both proteins had potent and robust in vitro neutralization activities against diverse SARS-CoV-2 variants including Omicron, with an average IC50 of up to 37 pM. In a stringent lethal SARS-CoV-2 infection mouse model, both proteins lowered lung viral load by up to ∼1000 fold, prevented the emergence of clinical signs in >75% animals, and increased animal survival rate from 0% (untreated) to >87.5% (treated). These results demonstrate that both proteins are good drug candidates for protecting animals from severe COVID-19. In a head-to-head comparison of these two proteins with five previously-described ACE2-Ig constructs, we found that two of these constructs, each carrying five surface mutations in the ACE2 region, had partial loss of neutralization potency against three SARS-CoV-2 variants. These data suggest that extensively mutating ACE2 residues near the RBD-binding interface should be avoided or performed with extra caution. Further, we found that both ACE2-Ig-95 and ACE2-Ig-105/106 could be produced to gram/liter level, demonstrating the developability of them as biologic drug candidates. Stress-condition stability test of them further suggests that more studies are required in the future to improve the stability of these proteins. These studies provide useful insight into critical factors for engineering and preclinical development of ACE2 decoys as broadly effective therapeutics against diverse ACE2-utilizing coronaviruses. Abstract Importance Engineering soluble ACE2 proteins that function as a receptor decoy to block SARS-CoV-2 infection is a very attractive approach to broadly effective and hard-to-escape anti-SARS-CoV-2 agents. This study here describes development of two antibody-like soluble ACE2 proteins that broadly block diverse SARS-CoV-2 variants including Omicron. In a stringent COVID-19 mouse model, both proteins successfully protected >87.5% animals from lethal SARS-CoV-2 infection. In addition, a head-to-head comparison of the two constructs developed in this study with five previously-described ACE2 decoy constructs were performed here. Two previously-described constructs with relatively more ACE2-surface mutations were found with less robust neutralization activities against diverse SARS-CoV-2 variants. Further, the developability of the two proteins as biologic drug candidates was also assessed here. This study provides two broadly anti-SARS-CoV-2 drug candidates and useful insight into critical factors for engineering and preclinical development of ACE2 decoy as broadly effective therapeutics against diverse ACE2-utilizing coronaviruses. Tweet Two antibody-like ACE2 decoy proteins could block diverse SARS-CoV-2 variants and prevent animals from severe COVID-19.
更多
查看译文
关键词
effective ace2 decoy proteins,mice,sars-cov
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要