Ellagitannins-Derived Intestinal Microbial Metabolite Urolithin A Ameliorates Fructose-Driven Hepatosteatosis by Suppressing Hepatic Lipid Metabolic Reprogramming and Inducing Lipophagy

Journal of agricultural and food chemistry(2023)

引用 1|浏览9
暂无评分
摘要
Excessive fructose consumption exacerbates the progression of nonalcoholic fatty liver disease (NAFLD) by disrupting hepatic lipid homeostasis. This study sought to evaluate the efficacy of urolithin A (UroA) in a fructose-induced NAFLD mouse model. UroA was administered in the high-fructose-fed mice to investigate the antisteatotic effects in vivo. Fructose stimulated HepG2 cells and primary hepatocytes were established for in vitro mechanistic assessment. The results suggested that UroA ameliorated fructose-induced hepatic steatosis in mice. Mechanistically, UroA impaired lipogenesis and enhanced fi-oxidation in the livers of fructose-fed mice. Notably, UroA facilitated hepatic lipophagy through the AMPK/ULK1 pathway both in vivo and in vitro, degrading lipid droplets for fueling fi-oxidation. This study indicates that UroA alleviates excessive lipid accumulation and restores lipid homeostasis in the livers of fructose-fed mice by suppressing lipid metabolic reprogramming and triggering lipophagy. Therefore, dietary supplementation of UroA or ellagitannins-rich foods may be beneficial for NAFLD individuals with high fructose intake.
更多
查看译文
关键词
urolithin A,nonalcoholic fatty liver disease,fructose,lipogenesis,lipophagy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要