Overexpression of MYB-like transcription factor SiMYB30 from foxtail millet (Setaria italica L.) confers tolerance to low nitrogen stress in transgenic rice.

Plant physiology and biochemistry : PPB(2023)

Cited 2|Views31
No score
Abstract
Nitrogen fertilizers significantly increase crop yield; however, the negative impact of excessive nitrogen use on the environment and soil requires urgent attention. Improving crop nitrogen use efficiency (NUE) is crucial to increase yields and protect the environment. Foxtail millet (Setaria italica L.), a gramineous crop with significant tolerance to barren croplands, is an ideal model crop for studying abiotic stress resistance in gramineous crops. However, knowledge of the regulatory network for NUE in foxtail millet is fragmentary. Herein, we identified an R2R3-like MYB transcription factor in foxtail millet, SiMYB30, which belongs to MYB subfamily 17. The expression of SiMYB30 is responsive to low nitrogen (LN) concentration. Compared with wildtype Kitaake, seedlings of rice lines overexpressing SiMYB30 showed significantly increased shoot fresh and dry weights, plant height, and root area under LN treatment indoors. Consistently, overexpression of SiMYB30 in field experiments significantly increased grain and stem nitrogen contents, grain yield per plant, and stem weight in rice. Furthermore, qRT-PCR revealed that SiMYB30 effectively activated the expression of nitrogen uptake-related genes-OsNRT1, OsNRT1.1B, and OsNPF2.4-and nitrogen assimilation-related genes-OsGOGAT1, OsGOGAT2, and OsNIA2. Notably, SiMYB30 directly bound to the promoter of OsGOGAT2 and regulated its expression. These results highlight the novel and pivotal role of SiMYB30 in improving crop NUE.
More
Translated text
Key words
Foxtail millet,Low nitrogen,MYB-Like transcription factor,Nitrogen use efficiency,Transgenic rice
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined