Bactericidal Action and Industrial Dye Degradation of Graphene Oxide and Polyacrylic Acid-Doped SnO2 Quantum Dots: In Silico Molecular Docking Study

ACS omega(2023)

引用 2|浏览8
暂无评分
摘要
The present work demonstrates the systematic incorporation of different concentrations of graphene oxide (GO) into a fixed amount of polyacrylic acid (PAA)-doped SnO2 quantum dots (QDs) through a coprecipitation approach. The research aimed to evaluate the catalytic and antibacterial actions of GO/PAA-SnO2 QDs. Moreover, optical properties, surface morphologies, crystal structures, elemental compositions, and d-spacings of prepared QDs were examined. X-ray diffraction patterns revealed the tetragonal configuration of SnO2, and the crystallinity of QDs was suppressed upon dopants verified by the SAED patterns. Electronic spectra identified the blue shift by incorporating GO and PAA led to a reduction in band gap energy. Fourier transform infrared spectra showed the existence of rotational and vibrational modes associated with the functional groups during the synthesis process. A drastic increase in the catalytic efficacy of QDs was observed in the neutral medium by including dopants, indicating that GO/PAA-SnO2 is a promising catalyst. GO/PAA-SnO2 showed strong bactericidal efficacy against Escherichia coli (E. coli) at higher GO concentrations. Molecular docking studies predicted the given nanocomposites, i.e., SnO2, PAA-SnO2, and GO/PAA-SnO2, as potential inhibitors of beta-lactamaseE. coli and DNA gyraseE. coli.
更多
查看译文
关键词
dairy products,Different factors,including host,environment
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要