Electrical stimulation to promote muscle and motor unit force and endurance after spinal cord injury.

The Journal of physiology(2023)

引用 0|浏览2
暂无评分
摘要
Fatigue is a common feature of paralysed skeletal muscle, hindering performance when subjected to functional electrical stimulation (ES) for movement. We asked whether (1) 20 Hz ES for 5% of each day (2.5 s on and 2.5 s off for 3 h) increases tibialis anterior and medial gastrocnemius muscle and motor unit (MU) endurance after paralysis by hemisection and deafferentation (HSDA), and (2) muscle length or loading affects their isometric contractile properties. The daily 5% ES increased muscle endurance, largely independent of muscle length or loading, but to a lesser extent than the daily 50% ES (2.5 s on and 2.5 s off for 24 h). The former was effective in counteracting the decline and slowing of muscle force promoted by the 50% ES. The altered muscle properties were confirmed at the MU level in final experiments once the properties had plateaued. Fast-fatigable MUs were converted to fatigue-intermediate and -resistant MUs that finally comprised ∼80% as compared to ∼10% of the total MU number in the daily 5% ES and the control normal groups, respectively. We conclude that the daily 5% ES regimen counteracts the fatigue of paralysed muscle without compromising contractile force, and thereby, is effective in conditioning muscle for effective movement. KEY POINTS: We asked whether 20 Hz electrical stimulation (ES) for 5% of each day (2.5 s on and 2.5 s off for 3 h; 5% ES) preserves medial gastrocnemius and tibialis anterior muscle and MU isometric contractile forces and increases their endurance after paralysis. Daily 5% ES promoted increased muscle endurance irrespective of the muscle length or loading but to a lesser extent than daily 50% ES (20 Hz ES 2.5 s on and 2.5 s off for 24 h). 5% ES was effective in counteracting decline and slowing of muscle force that resulted from 50% ES. Motor units (MUs) were converted from fast fatigable to fatigue intermediate and resistant MUs, comprising ∼80% as compared to ∼10% in the control normal groups. We conclude that the 5% ES regimen counteracts the fatigue of paralysed muscle without compromising contractile force, and thereby is effective in conditioning the muscle for effective movement.
更多
查看译文
关键词
5% per day electrical stimulation,contractile properties,hemisection and deafferentation,medial gastrocnemius muscle,muscle and motor unit properties,muscle length,muscle loading,tibialis anterior muscle
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要