Delivery of microRNA-302a-3p by APTES modified hydroxyapatite nanoparticles to promote osteogenic differentiation in vitro

BDJ open(2023)

Cited 2|Views6
No score
Abstract
Objective To demonstrate the miRNA delivery by hydroxyapatite nanoparticles modified with APTES (HA-NPs-APTES) and promote osteogenic gene expression. Materials and methods Osteosarcoma cells (HOS, MG-63) and primary human mandibular osteoblasts (HmOBs) were co-cultured with HA-NPs-APTES conjugated with miRNA-302a-3p. Resazurin reduction assay was performed to evaluate HA-NPs-APTES biocompatibility. Intracellular uptake was demonstrated by confocal fluorescent and scanning electron microscopy. The miRNA-302a-3p and its mRNA targets expression levels including COUP-TFII and other osteogenic genes were assessed by qPCR on day1 or day5 post-delivery. Calcium deposition induced by the osteogenic gene upregulation was shown by alizarin red staining on day7 and 14 post-delivery. Results Proliferation of HOS cells treated with HA-NPs-APTES was similar to that of untreated cells. HA-NPs-APTES was visualized in cell cytoplasm within 24 hours. MiRNA-302a-3p level was upregulated in HOS, MG-63 and HmOBs as compared to untreated cells. As a result, COUP-TFII mRNA expression was reduced, followed by an increase of RUNX2 and other osteogenic genes mRNA expression. Calcium deposition induced by HA-NPs-APTES-miR-302a-3p in HmOBs was significantly higher than in untreated cells. Conclusion HA-NPs-APTES may support the delivery of miRNA-302a-3p into bone cells, as assessed by osteogenic gene expression and differentiation improvement once this combination is used on osteoblast cultures.
More
Translated text
Key words
hydroxyapatite nanoparticles,osteogenic differentiation,vitro
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined