Guidable Local Hamiltonian Problems with Implications to Heuristic Ans\"atze State Preparation and the Quantum PCP Conjecture

arxiv(2023)

引用 0|浏览0
暂无评分
摘要
We introduce 'Merlinized' versions of the recently defined Guided Local Hamiltonian problem, which we call 'Guidable Local Hamiltonian' problems. Unlike their guided counterparts, these problems do not have a guiding state provided as a part of the input, but merely come with the promise that one exists and that it satisfies certain constraints. We consider in particular two classes of guiding states: those that can be prepared efficiently by a quantum circuit; and those belonging to a class of quantum states we call classically evaluatable, which have a short classical description from which it is possible to efficiently compute expectation values of local observables classically. We show that guidable local Hamiltonian problems for both classes of guiding states are $\mathsf{QCMA}$-complete in the inverse-polynomial precision setting, but lie within $\mathsf{NP}$ (or $\mathsf{NqP}$) in certain parameter regimes when the guiding state is classically evaluatable. We discuss the implications of these results to heuristic ans\"atze state preparation and the quantum PCP conjecture. Our completeness results show that, from a complexity-theoretic perspective, classical ans\"atze prepared by classical heuristics are just as powerful as quantum ans\"atze prepared by quantum heuristics, so long as one has access to quantum phase estimation. In relation to the quantum PCP conjecture, we (i) define a PCP for $\mathsf{QCMA}$ and show that it is equal to $\mathsf{NP}$ under quantum reductions; (ii) show several no-go results for the existence of quantum gap amplification procedures that preserve certain ground state properties; and (iii) propose two conjectures that can be viewed as stronger versions of the NLTS theorem. Finally, we show that many of our results can be directly modified to obtain similar results for the class $\mathsf{MA}$.
更多
查看译文
关键词
local hamiltonian problems,quantum,guidable,heuristic
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要