Transportation of dislocation plasticity in a dual-phase TiMo alloy

Jinghui Men,Xiaoqian Fu,Qian Yu

Scientific reports(2023)

引用 0|浏览9
暂无评分
摘要
Understanding the coordinated deformation of multiple phases under applied stress is crucial for the structural design of dual-phase or multiphase advanced alloys. In this study, in-situ transmission electron microscope tensile tests were performed to investigate the dislocation behaviors and the transportation of dislocation plasticity during the deformation of a dual-phase Ti-10(wt.%) Mo alloy having hexagonal close-packed α phase and body-centered cubic β phase. We demonstrated that the dislocation plasticity preferred to transmit from alpha to alpha phase along the longitudinal axis of each plate, regardless of where dislocations were formed. The intersections of different α plates provided local stress concentration that facilitated the initiation of dislocation activities from there. Dislocations then migrated along the longitudinal axis of α plates and carried dislocation plasticity from one plate to another through these intersections as well. Since the α plates distributed in various orientations, dislocation slips occurred in multiple directions, which is beneficial for uniform plastic deformation of the material. Our micropillar mechanical testing further quantitatively demonstrated that the distribution of α plates and the α–α plates’ intersections plays important role in tuning the mechanical properties of the material.
更多
查看译文
关键词
Materials science,Structural materials,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要