3D Radiation Hydrodynamic Simulations of Gravitational Instability in AGN Accretion Disks: Effects of Radiation Pressure

arxiv(2023)

引用 4|浏览6
暂无评分
摘要
We perform 3D radiation hydrodynamic local shearing box simulations to study the outcome of gravitational instability (GI) in optically thick Active Galactic Nuclei (AGN) accretion disks. GI develops when the Toomre parameter QT \leq 1, and may lead to turbulent heating that balances radiative cooling. However, when radiative cooling is too efficient, the disk may undergo runaway gravitational fragmentation. In the fully gas-pressure-dominated case, we confirm the classical result that such a thermal balance holds when the Shakura-Sunyaev viscosity parameter (alpha) due to the gravitationally-driven turbulence is \sim 0.2, corresponding to dimensionless cooling times Omega tcool \sim 5. As the fraction of support by radiation pressure increases, the disk becomes more prone to fragmentation, with a reduced (increased) critical value of alpha (omega tcool). The effect is already significant when the radiation pressure exceeds 10% of the gas pressure, while fully radiation-pressure-dominated disks fragment at Omega tcool <50 . The latter translates to a maximum turbulence level alpha<0.02, comparable to that generated by Magnetorotational Instability (MRI). Our results suggest that gravitationally unstable (QT \sim 1) outer regions of AGN disks with significant radiation pressure (likely for high/near- Eddington accretion rates) should always fragment into stars, and perhaps black holes.
更多
查看译文
关键词
agn accretion disks,gravitational instability,radiation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要