Asymmetry of motion: vortex rings crossing a density gradient

arxiv(2023)

引用 0|浏览4
暂无评分
摘要
Vortex rings are critical for thrust production underwater. In the ocean, self-propelled mesozooplankton generate vortices while swimming within a weakly stratified fluid. While large-scale biogenic transport has been observed during vertical migration in the wild and lab experiments, little focus has been given to the evolution of induced vortex rings as a function of their propagation direction relative to the density gradient. In this study, the evolution of an isolated vortex ring crossing the interface of a stable two-layer system is examined as a function of its translation direction with respect to gravity. The vortex ring size and position are visualized using Planar Induced Fluorescence (PLIF) and the induced vorticity field derived from Particle Image Velocimetry (PIV) is examined. It is found that the production of baroclinic vorticity significantly affects the propagation of vortex rings crossing the density interface. As a result, any expected symmetry between vortex rings traveling from dense to light fluids and from light to dense fluids breaks down. In turn, the maximum penetration depth of the vortex ring occurs in the case in which the vortex propagates against the density gradient due to the misalignment of the pressure and density gradients. Our results have far-reaching implications for the characterization of local ecosystems in marine environments.
更多
查看译文
关键词
vortex dynamics,vortex instability
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要