Traces of Meaning Itself: Encoding Distributional Word Vectors in Brain Activity.

Neurobiology of language (Cambridge, Mass.)(2020)

引用 8|浏览0
暂无评分
摘要
How is semantic information stored in the human mind and brain? Some philosophers and cognitive scientists argue for vectorial representations of concepts, where the meaning of a word is represented as its position in a high-dimensional neural state space. At the intersection of natural language processing and artificial intelligence, a class of very successful distributional word vector models has developed that can account for classic EEG findings of language, that is, the ease versus difficulty of integrating a word with its sentence context. However, models of semantics have to account not only for context-based word processing, but should also describe how word meaning is represented. Here, we investigate whether distributional vector representations of word meaning can model brain activity induced by words presented without context. Using EEG activity (event-related brain potentials) collected while participants in two experiments (English and German) read isolated words, we encoded and decoded word vectors taken from the family of prediction-based Word2vec algorithms. We found that, first, the position of a word in vector space allows the prediction of the pattern of corresponding neural activity over time, in particular during a time window of 300 to 500 ms after word onset. Second, distributional models perform better than a human-created taxonomic baseline model (WordNet), and this holds for several distinct vector-based models. Third, multiple latent semantic dimensions of word meaning can be decoded from brain activity. Combined, these results suggest that empiricist, prediction-based vectorial representations of meaning are a viable candidate for the representational architecture of human semantic knowledge.
更多
查看译文
关键词
EEG,MVPA,N400,Word2vec,encoding/decoding,semantics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要