Eddy current-induced artifacts correction in high gradient strength diffusion MRI with dynamic field monitoring: demonstration in ex vivo human brain imaging

bioRxiv the preprint server for biology(2023)

Cited 0|Views37
No score
Abstract
Purpose To demonstrate the advantages of spatiotemporal magnetic field monitoring to correct eddy current-induced artifacts (ghosting and geometric distortions) in high gradient strength diffusion MRI (dMRI). Methods A dynamic field camera with 16 NMR field probes was used to characterize eddy current fields induced from diffusion gradients for different gradients strengths (up to 300 mT/m), diffusion directions, and shots in a 3D multi-shot EPI sequence on a 3T Connectom scanner. The efficacy of dynamic field monitoring-based image reconstruction was demonstrated on high-resolution whole brain ex vivo dMRI. A 3D multi-shot image reconstruction framework was informed with the actual nonlinear phase evolution measured with the dynamic field camera, thereby accounting for high-order eddy currents fields on top of the image encoding gradients in the image formation model. Results Eddy current fields from diffusion gradients at high gradient strength in a 3T Connectom scanner are highly nonlinear in space and time, inducing high-order spatial phase modulations between odd/even echoes and shots that are not static during the readout. Superior reduction of ghosting and geometric distortion was achieved with dynamic field monitoring compared to ghosting approaches such as navigator- and structured low-rank-based methods or MUSE, followed by image-based distortion correction with eddy. Improved dMRI analysis is demonstrated with diffusion tensor imaging and high-angular resolution diffusion imaging. Conclusion Strong eddy current artifacts characteristic of high gradient strength dMRI can be well corrected with dynamic field monitoring-based image reconstruction, unlike the two-step approach consisting of ghosting correction followed by geometric distortion reduction with eddy. ### Competing Interest Statement The authors have declared no competing interest.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined