Beneficial Role of Inherently Formed Residual Lithium Compounds on the Surface of Ni-Rich Cathode Materials for All-Solid-State Batteries.

ACS applied materials & interfaces(2023)

引用 0|浏览13
暂无评分
摘要
This study validates the beneficial role of residual Li compounds on the surface of Ni-rich cathode materials (LiNiCoMnO, NCM). Residual Li compounds on Ni-rich NCM are naturally formed during the synthesis procedure, which degrades the initial Coulombic efficiency and generates slurry gelation during electrode fabrication in Li-ion batteries (LIBs) using liquid electrolytes. To solve this problem, washing pretreatment is usually introduced to remove residual Li compounds on the NCM surface. In contrast to LIBs, we found that residual Li compounds can serve as a functional layer that suppresses the interfacial side reactions of the NCM in all-solid-state batteries (ASSBs). The formation of resistive phosphate-based compounds from the undesirable side reaction during the initial charging step is suppressed by the residual Li compounds on the surface of the NCM, thereby reducing polarization growth in ASSBs and enhancing rate performances. The advantageous effects of the intrinsic residual Li compounds on the NCM surface suggest that the essential washing process of the NCM for the liquid-based LIB system should be reconsidered for ASSB systems.
更多
查看译文
关键词
all-solid-state batteries,anodic decomposition,high nickel cathode,interfacial reaction,residual lithium compounds
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要