Carbon Electrode-Based Biosensing Enabled by Biocompatible Surface Modification with DNA and Proteins.

Bioconjugate chemistry(2023)

引用 1|浏览3
暂无评分
摘要
Modification of electrodes with biomolecules is an essential first step for the development of bioelectrochemical systems, which are used in a variety of applications ranging from sensors to fuel cells. Gold is often used because of its ease of modification with thiolated biomolecules, but carbon screen-printed electrodes (SPEs) are gaining popularity due to their low cost and fabrication from abundant resources. However, their effective modification with biomolecules remains a challenge; the majority of work to-date relies on nonspecific adhesion or broad amide bond formation to chemical handles on the electrode surface. By combining facile electrochemical modification to add an aniline handle to electrodes with a specific and biocompatible oxidative coupling reaction, we can readily modify carbon electrodes with a variety of biomolecules. Importantly, both proteins and DNA maintain bioactive conformations following coupling. We have then used biomolecule-modified electrodes to generate microbial monolayers through DNA-directed immobilization. This work provides an easy, general strategy to modify inexpensive carbon electrodes, significantly expanding their potential as bioelectrochemical systems.
更多
查看译文
关键词
biosensing,biocompatible surface modification,carbon,dna,electrode-based
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要