Disentangling creep and isothermal metamorphism during snow settlement with X-ray tomography

JOURNAL OF GLACIOLOGY(2022)

引用 0|浏览2
暂无评分
摘要
Once fallen, snow settles due to the combined effects of metamorphism and deformation of the ice matrix under gravity. To understand how these coupled processes affect snow evolution, we performed oedometric compression tests and continuously monitored the snow microstructure.with X-ray tomography. Centimetric samples with an initial density between 200 and 300 kgm(-3) were followed during an initial sintering phase and under two different loads of 2.1 and 4.7 kPa at -8 degrees C for similar to 1 week. The microstructure captured at a voxel size of 8.5 mu m was characterized by density, specific surface area (SSA) and two metrics related to bond network, namely the Euler characteristic and the minimum cut surface. Load-induced creep of the ice matrix was observed only for sufficiently low values of initial density (<290 kgm(-3) in our tests), and was shown to be associated to a significant increase of the number of bonds. Application of the load, however, did not affect the individual bond size nor the SSA, which appeared to be mainly controlled by isothermal metamorphism. The uniaxial compression did not induce any creation of anisotropy on the microstructural characteristics. Overall, our results show that, for the considered conditions, the deformation of the ice matrix mainly leads to a reduction of the pore space and an increase of the coordination number, while metamorphism mainly affects the grain and bond sizes.
更多
查看译文
关键词
Snow mechanics,snow microstructure,snow physics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要