Computer Vision Based Quality Control for Additive Manufacturing Parts

INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY(2022)

Cited 6|Views3
No score
Abstract
This work presents a novel methodology for the quality assessment of material extrusion parts through AI-based Computer Vision. To this end, different techniques are integrated using inspection methods that are applied to other areas in additive manufacturing field. The system is divided into four main points: (1) pre-processing, (2) color analysis, (3) shape analysis, and (4) defect location. The color analysis is performed in CIELAB color space, and the color distance between the part under analysis and the reference surface is calculated using the color difference formula CIE2000 . The shape analysis consists of the binarization of the image using the Canny edge detector. Then, the Hu moments are calculated for images from the part under analysis and the results are compared with those from the reference part. To locate defects, the image of the part to be analyzed is first processed with a median filter, and both the original and filtered image are subtracted. Then, the resulting image is binarized, and the defects are located through a blob detector. In the training phase, a subset of parts was used to evaluate the performance of different methods and to set the values of parameters. Later, in a testing and validation phase, the performance of the system was evaluated using a different set of parts. The results show that the proposed system is able to classify parts produced by additive manufacturing, with an overall accuracy of 86.5%, and to locate defects on their surfaces in a more effective manner.
More
Translated text
Key words
Automatic inspection,Additive manufacturing,Computer vision,Color and shape analysis,Defect location
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined