Two- and three-dimensional wake transitions of a NACA0012 airfoil

JOURNAL OF FLUID MECHANICS(2023)

引用 5|浏览5
暂无评分
摘要
Flow transitions are an important fluid-dynamic phenomena for many reasons, including the direct effect on the aerodynamic forces acting on the body. In the present study, two-dimensional (2-D) and three-dimensional (3-D) wake transitions of a NACA0012 airfoil are studied for angles of attack in the range 0 degrees <= alpha <= 20 degrees and Reynolds numbers 500 <= Re <= 5000. The study uses water-channel experiments and 2-D and 3-D numerical simulations based on the nodal spectral-element method, level-set function-based immersed-interface method and Floquet stability analysis. The different wake states are categorised based on the time-instantaneous wake structure, non-dimensional frequency and aerodynamic force coefficients. The wake states and transition boundaries are summarised in a wake regime map. The critical angle of attack and Reynolds number for the supercritical Hopf bifurcation (i.e. steady to periodic wake transition) varies as alpha(1)similar to Re-0.65, while the critical angle of attack for the onset of three dimensionality varies as alpha(3D)similar to Re-0.5. Over the entire Reynolds number range, the transition to 3-D flow occurs through a mode C (subharmonic) transition. Beyond this initial transition, further instabilities of the 2-D periodic base flow arise and are investigated. For instance, at Re = 2000 and alpha(3D,2) = 11.0 degrees, mode C coexists together with modes related to modes A and QP seen in a stationary circular cylinder wake. In contrast, at Re = 5000 and alpha(3D,)2 = 8.0 degrees, the dominant mode C coexists with mode QP. Three-dimensional simulations well beyond critical angles indicate that 2-D vortex-street transitions are approximately maintained in the fully saturated 3-D wakes in a spanwise-averaged sense.
更多
查看译文
关键词
vortex flows,wakes/jets,instability
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要