Chrome Extension
WeChat Mini Program
Use on ChatGLM

Multi-Objective Optimal Long-Term Operation of Cascade Hydropower for Multi-Market Portfolio and Energy Stored at End of Year

ENERGIES(2023)

Cited 2|Views23
No score
Abstract
Taking into account both market benefits and power grid demand is one of the main challenges for cascade hydropower stations trading on electricity markets and secluding operation plan. This study develops a multi-objective optimal operation model for the long-term operation of cascade hydropower in different markets. Two objectives were formulated for economics benefits and carryover energy storage. One was to maximize the market utility value based on portfolio theory, for which conditional value at risk (CVaR) was applied to measure the risk of multi-markets. Another was the maximization of energy storage at the end of a year. The model was solved efficiently through a multi-objective particle swarm optimization (MOPSO). Under the framework of the MOPSO, the chaotic mutation search mechanism and elite individual retention mechanism were introduced to diversify and accelerate the non-inferior solution sets. Lastly, a dynamic updating of archives was established to collect the non-inferior solution. The proposed model was implemented on the hydropower plants on the Lancang River, which traded on the Yunnan Electricity Market (YEM). The results demonstrated non-inferior solution sets in wet, normal and dry years. A comparison in solution sets revealed an imbalanced mutual restriction between objectives, such that a 2.65 billion CNY increase in market utility costs a 13.96 billion kWh decrease in energy storage. In addition, the non-inferior solution provided various schemes for actual demands based on other evaluating indexes such as the minimum output, power generation and spillage.
More
Translated text
Key words
electricity market,mean-CVaR,cascade dispatching,MOPSO
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined