Structural basis for mTORC1-dependent regulation of the lysosomal and autophagic transcription factor EB

Biophysical Journal(2023)

引用 0|浏览1
暂无评分
摘要
The transcription factor TFEB is a master regulator of lysosomal biogenesis and autophagy. The phosphorylation of TFEB by the mechanistic target of rapamycin complex 1 (mTORC1) is unique in its mTORC1 substrate recruitment mechanism, which is strictly dependent on the amino-acid-mediated activation of the RagC GAP FLCN. TFEB lacks the TOR signaling (TOS) motif responsible for the recruitment of other mTORC1 substrates. We used cryo-electron microscopy (cryo-EM) to determine the structure of TFEB as presented to mTORC1 for phosphorylation. Two full Rag-Ragulator complexes present each molecule of TFEB to the mTOR active site. One Rag-Ragulator complex is bound to Raptor in the canonical mode seen previously in the absence of TFEB. A second Rag-Ragulator complex (non-canonical) docks onto the first via a RagC GDP-dependent contact with the second Ragulator complex. The non-canonical Rag dimer binds the first helix of TFEB in a RagCGDP-dependent aspartate clamp in the cleft between the Rag G domains. Mutation of the clamp drives TFEB constitutively into the nucleus whilst having no effect on mTORC1 localization. The remainder of the 108-amino acid TFEB docking domain winds around Raptor and then back to RagA. This structure presents the phosphorylatable Ser residues of TFEB to the mTORC1 active site in a suitable geometry for their phosphorylation. The double use of RagC GDP contacts in both Rag dimers explains the strong dependence of TFEB phosphorylation on FLCN and the RagC GDP state.
更多
查看译文
关键词
autophagic transcription factor eb
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要