Three-dimensional single-molecule localization microscopy with metal-induced energy transfer

Biophysical Journal(2023)

Cited 0|Views13
No score
Abstract
Over the past two decades, super-resolution microscopy has seen a tremendous development in speed and resolution, but for most of its methods, there exists a remarkable gap between lateral and axial resolution, which is by a factor of 2 to 3 worse. One recently developed method to close this gap is metal-induced energy transfer (MIET) imaging, which achieves an axial resolution down to nanometers. It exploits the distance-dependent quenching of fluorescence when a fluorescent molecule is brought close to a metal surface. We combine the extreme axial resolution of MIET imaging with the extraordinary lateral resolution of single-molecule localization microscopy, in particular with direct stochastic optical reconstruction microscopy (dSTORM). This combination allows us to achieve isotropic three-dimensional super-resolution imaging of subcellular structures. Moreover, we used spectral demixing for implementing dual-color MIET-dSTORM that allows us to image and colocalize, in three dimensions, two different cellular structures simultaneously.
More
Translated text
Key words
microscopy,energy transfer,localization,three-dimensional,single-molecule,metal-induced
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined