Strong Dual Antipolymerase/Antiexonuclease Actions of Some Aminothiadiazole Antioxidants: A Promising In-Silico/In-Vitro Repurposing Research Study against the COVID-19 Omicron Virus (B.1.1.529.3 Lineage).

Advances in redox research : an official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe(2023)

引用 1|浏览1
暂无评分
摘要
Currently, nitrogen-containing heterocyclic virucides take the lead as top options for treating the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and their escorting disease, the coronavirus disease 2019 (COVID-19). But unfortunately, the sudden emergence of a new strain of SARS-CoV-2, the Omicron variant and its lineages, complicated matters in the incessant COVID-19 battle. Goaling the two paramount coronaviral-2 multiplication enzymes RNA-dependent RNA polymerase (RdRp) and 3'-to-5' exoribonuclease (ExoN) at synchronous times using single ligand is a quite effective new binary avenue to restrain SARS-CoV-2 reproduction and cease COVID-19 progression irrespective of the SARS-CoV-2 strain type, as RdRps and ExoNs are vastly conserved in all SARS-CoV-2 strains. The presented in-silico/in-vitro research winnowed our own small libraries of antioxidant nitrogenous heterocyclic compounds, inspecting for the utmost convenient drug candidates expectedly capable of effectively working through this dual tactic. Computational screening afforded three promising compounds of the antioxidant 1,3,4-thiadiazole class, which were named ChloViD2022, Taroxaz-26, and CoViTris2022. Subsequent biological examination, employing the in-vitro anti-RdRp/anti-ExoN and anti-SARS-CoV-2 assays, exclusively demonstrated that ChloViD2022, CoViTris2022, and Taroxaz-26 could efficiently block the replication of the new lineages of SARS-CoV-2 with considerably minute anti-RdRp and anti-SARS-CoV-2 EC50 values of about 0.18 and 0.44 μM for ChloViD2022, 0.22 and 0.72 μM for CoViTris2022, and 0.25 and 0.78 μM for Taroxaz-26, in the order, overtaking the standard anti-SARS-CoV-2 drug molnupiravir. These biochemical findings were optimally presupported by the results of the prior in-silico screening, suggesting that the three compounds might potently hit the catalytic active sites of the virus's RdRp and ExoN enzymes. Furthermore, the perfect pharmacophoric features of ChloViD2022, Taroxaz-26, and CoViTris2022 molecules make them typical dual inhibitors of SARS-CoV-2 replication and proofreading, with their relatively flexible structures eligible for diverse forms of chemical modification. In sum, the current important results of this thorough research work exposed the interesting repurposing potential of the three 2-amino-1,3,4-thiadiazole ligands, ChloViD2022, Taroxaz-26, and CoViTris2022, to effectively conflict with the vital biointeractions between the coronavirus's polymerase/exoribonuclease and the four essential RNA nucleotides, and, accordingly, arrest COVID-19 disease, persuading the relevant investigators to quickly begin the three agents' comprehensive preclinical and clinical anti-COVID-19 assessments.
更多
查看译文
关键词
2-Amino-1,3,4-thiadiazole Class,Anti-COVID-19 Drug,Anti-Omicron-B.1.1.529.3 Agent,ChloViD2022,CoViTris2022,Coronaviral Polymerase Inhibitor,Coronaviral-2 Proofreading 3′-to-5′ Exoribonuclease (ExoN),SARS-CoV-2 RNA-dependent RNA Polymerase (RdRp),Taroxaz-26,Virucidal Antioxidant
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要