Increase in the Erosion Rate Due to the Impact of Climate Change on Sea Level Rise: Victoria Beach, a Case Study

Journal of Marine Science and Engineering(2022)

Cited 2|Views12
No score
Abstract
This article provides a general methodology for calculating the retreat of the coastline and the volume of sand necessary to renourish a beach due to sea level rise (SLR) in the medium-long term. An example is presented, Victoria Beach, and a projection is made for the years 2030, 2040, 2050, and 2100. The results obtained take into account global sea level rise (GSLR), which is worldwide, and local sea level rise (LSLR), which considers climate variability and vertical land movements. Regarding GSLR, data were provided by the projections from IPCC (Intergovernmental Panel on Climate Change) scenarios and empirical models, such as Rahmstorf and Pfeffer. The LSLR data came from the tide gauge station located in Cadiz. Finally, the results obtained showed that global warming impacts erosive effects and the subsequent volume of sand required to renourish beaches. The total sea level rise (TSLR) projections indicated for Victoria Beach are relatively higher than the GSLR projections. Even in the best IPCC scenario (RCP 2.6), Victoria Beach presents a significant erosion of 52 m, requiring a volume of sand of 1.0 Mm3 to supply renourishment.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined