CELF1 Selectively Regulates Alternative Splicing of DNA Repair Genes Associated With Cataract in Human Lens Cell Line

Jun Xiao,Siyan Jin, Xue Wang, Ju Huang,He Zou

BIOCHEMICAL GENETICS(2022)

引用 1|浏览0
暂无评分
摘要
Cataract is a global eye disease caused by the opacification of lens, while its underlying molecular pathogenesis is not clear, making it difficult for prevention. CELF1, an RNA binding protein, mediates Alternative Splicing (AS) of genes involved in diverse diseases and regulates development or defects of lens. Utilizing transcriptome-wide approaches, we analyzed and compared AS patterns between human lens epithelial cells (SRA01/04) with CELF1 overexpression (CELF1-OE) and control cells. Extensive changes in AS patterns upon CELF1-OE were identified in SRA01/04 cells. We finally identified 840 CELF1-regulated AS events (RASEs) and found that CELF1-OE preferred to repress exon skipping events in SRA01/04 cells. CELF1-regulated AS genes were enriched in the regulation of DNA repair, cellular response to DNA damage stimulus, and apoptosis pathways (including HMGA2, CSNK1E, and YAP1). These biological functions and pathways have been reported to be associated with lens development or other eye diseases. To further explore the mechanisms of CELF1 in regulating AS genes, we downloaded and re-analyzed a set of CELF1-RNA interactome data. We found that 194 genes were bound and regulated by CELF1 at the AS level. 10 genes involved in DNA repair-related pathways were also bound by CELF1. Motif analysis for CELF1-bound peaks and splicing sites of RASEs showed that CELF1 regulates AS by binding to the AGGU[AG]AG motif in SRA01/04 cells. CELF1 could mediate AS of DNA repair-related genes through directly binding to their transcripts with distinct motif bias. The functional mechanism of CELF1 may ultimately participate in cataract formation and lens development.
更多
查看译文
关键词
Cataract,CELF1,Transcriptome,Alternative splicing,DNA repair
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要