CO2 laser-assisted sintering of TiO2 nanoparticles for transparent films

JOURNAL OF LASER APPLICATIONS(2023)

Cited 2|Views1
No score
Abstract
Nanoelectrospray laser deposition (NELD) of nanoparticles (NPs) on various substrates has attracted considerable attention as a fast, cost-effective, and scalable technique for precise control of heating time and zone. In this work, NELD-assisted sintering of titanium dioxide (TiO2) NPs on borosilicate glass and quartz substrates is addressed. A 10.6 mu m CO2 laser was used for patterning and sintering titania nanoparticles in ambient air. The effects of laser dose and deposition process parameters on the morphological, structural, and optical characteristics of the sintered TiO2 patterns were characterized using optical microscopy, scanning electron microscopy, and x-ray diffraction. The results point out that the anatase phase was preserved after laser sintering, without the appearance of any TiO2 rutile traces. We show that the improvement in the morphological properties of TiO2 patterns is due to the laser sintering of a dense layer of ceramic with enhanced interconnectivity and connection between single nanoparticles. A theoretical model was developed to select the temperature required to sinter TiO2 nanoparticles and to correlate it with the laser power and scanning speed to prevent cracking on the substrate and sintered nanoparticles and also to get transparent TiO2 films. An optical transmittance of & SIM; 91 % was achieved. The experimental data were in accordance with the theoretical model, predicting the success of the model. Published under an exclusive license by AIP Publishing.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined