Role of morphology in defect formation and photo-induced carrier instabilities in amorphous indium oxide

APPLIED PHYSICS LETTERS(2022)

引用 0|浏览5
暂无评分
摘要
Ab initio molecular dynamics liquid-quench simulations and hybrid density functional calculations are performed to model the effects of room-temperature atomic fluctuations and photo-illumination on the structural and electronic properties of amorphous sub-stoichiometric In2O2.96. A large configurational ensemble is employed to reliably predict the distribution of localized defects as well as their response to the thermal and light activation. The results reveal that the illumination effects on the carrier concentration are greater in amorphous configurations with shorter In-O bond length and reduced polyhedral sharing as compared to the structures with a more uniform morphology. The obtained correlation between the photo-induced carrier density and the reduction in the number of fully coordinated In-atoms implies that metal oxides with a significant fraction of crystalline/amorphous interfaces would show a more pronounced response to illumination. Photo-excitation also produces In-O-2-In defects that have not been previously found in sub-stoichiometric amorphous oxides; these defects are responsible for carrier instabilities due to overdoping. Published under an exclusive license by AIP Publishing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要